Processing math: 8%
- \lim_{x\to\infty}(1+\frac1x)^{3x}
- lim_{x\to\infty}(1+\frac{1}{x^2})^{3x-4}
- lim_{x\to\infty}(\frac{7x+10}{1+7x})^{\frac x3}
- \lim_{x\to 0}x^{x}
- \lim_{x\to 1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}
- \lim_{x\to a}\frac{\sqrt{x-b}-\sqrt{a-b}}{x^2-a^2}
- \lim_{x\to 1}\frac{x^2-x\sin x}{x-\sin^2x}
- \lim_{x\to +\infty}\left(\frac{x+1}{ln x}\right)
- \lim_{x\to +\infty}\frac{lnx+2x^2-2x+1}{x}
- \lim_{x\to 0^+}ln(\cos x)lnx
- \lim_{x\to +\infty}\frac{e^xlnx+1}{x^2}
- \lim_{x\to 0}\frac{\sin x+e^x-1}{x^2+x}
No comments:
Post a Comment