-
This is default featured slide 1 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
-
This is default featured slide 2 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
-
This is default featured slide 3 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
-
This is default featured slide 4 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
-
This is default featured slide 5 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
លំហាត់
- ចូរគណនាលីមីតខាងក្រោម៖
- $\lim_{x\to\infty}(1+\frac1x)^{3x}$
- $lim_{x\to\infty}(1+\frac{1}{x^2})^{3x-4}$
- $lim_{x\to\infty}(\frac{7x+10}{1+7x})^{\frac x3}$
- $\lim_{x\to 0}x^{x}$
- $\lim_{x\to 1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}$
- $\lim_{x\to a}\frac{\sqrt{x-b}-\sqrt{a-b}}{x^2-a^2}$
- $\lim_{x\to 1}\frac{x^2-x\sin x}{x-\sin^2x}$
- $\lim_{x\to +\infty}\left(\frac{x+1}{ln x}\right)$
- $\lim_{x\to +\infty}\frac{lnx+2x^2-2x+1}{x}$
- $\lim_{x\to 0^+}ln(\cos x)lnx$
- $\lim_{x\to +\infty}\frac{e^xlnx+1}{x^2}$
- $\lim_{x\to 0}\frac{\sin x+e^x-1}{x^2+x}$
លំហាត់
- ដោយប្រើ Leinitz's rule ចូររកដេរីទី n-th នៃអនុគមន៏ខាងក្រោម៖
- $y=x.e^x$
- $y=\frac{1+x}{\sqrt{x}}$
- $y=x^2.e^{-2x}$
- $y=(1-x^3)\cos x$
- $y=x^3.\ln x$
លំហាត់
- $y=x^3\sin x$
- $y=\sin x$
- $y=\cos x$
- $y=\frac{1}{x-2}$
- $y=\sqrt{x}$
- $y=\cos 2x$
- $y=\frac{1+x}{1-x}$
- $y=\sin^2x$
- $y=e^{-3x}$
- $y=\ln(x+1)$ by chanchav
លំហាត់គណិតវិទ្យា
- សមីការលីនេអ៊ែរលំដាប់មួយមានរាង៖$a(x)y'+b(x)y=f(x)$ដើម្បីដោះស្រាយសមីការលីនេអ៊ែរលំដាប់មួយគេត្រូវប្រើវីធីម្យាង
ឈ្មោះថាកត្តាអាំតេក្រាល - គេត្រូវសរសេរសមីការនេះឲ្យទៅជារាង$y'+p(x)y=g(x)$ដែល$p(x)=\frac{b(x)}{a(x)}$និង$g(x)=\frac{f(x)}{a(x)}$។ គុណសមីការដោយកត្តាអាំងតេក្រាលគឺ$e^{\int p(x)dx}$គេបាន $e^{\int p(x)dx}y'+e^{\int p(x)dx}p(x)y=g(x)e^{\int p(x)dx}\iff (ye^{\int p(x)dx})'=g(x)e^{\int p(x)dx}$
- $\int (ye^{\int p(x)dx})'dx=\int g(x)e^{\int p(x)dx}dx+c\iff y= e^{-\int p(x)}\int g(x)e^{\int p(x)dx}+ e^{-\int p(x)dx}c$